SYSTEM OPERATIONAL REQUEST: FWS #1

TO: BG Scott Spellmon COE-NWD Commander

Lt. Col. Damon Delarosa
Jim Fredericks
Steve Barton

COE-NWW Commander
COE-NWD-PDD Chief
COE-NWD-PDW Chief

Tim Dykstra COE-NWD-PDD
Julie Ammann COE-NWD-PDW-RC
Doug Baus COE-NWD-PDW-RC
Steve Hall COE-NWW-EC

Steve Hall COE-NWW-EC COE-NWW-OD

Lorri Lee USBR-PN Regional Director

John Roache
Joel Fenolio
USBR-PN-6208
USBR-PN-6204

Elliot Mainzer BPA Administrator

Kieren Connolly
Lorri Bodi
BPA-E-4
Jason Sweet
BPA-PGB
Eve James
BPA-PGBPO
Tony Norris
BPA-PGPO-5
Scott Bettin
BPA-EWP-4

JR Inglis COE-NWD Tribal Liaison
Dean Holecek COE-NWW Tribal Liaison

FROM: Gregory Hughes, State Supervisor, U.S. Fish and Wildlife Service, Idaho Fish and Wildlife Office, on behalf of the Libby BO Policy Group

DATE: May 7, 2018

SUBJECT: 2018 Libby Dam Releases for Sturgeon and Bull Trout Augmentation Flows

SPECIFICATIONS:

Based on the U.S. Fish and Wildlife Service's (Service) February 2006 Biological Opinion (2006 BO) on operations of Libby Dam, and the May final April-August volume runoff forecast of 7.35 million acre-feet (MAF), we are within a Tier 4 operations year for Kootenai River white sturgeon. The minimum recommended release volume for sturgeon conservation in a Tier 4 year is 1.2 MAF and we recommend the following procedures for discharge of at least this minimum volume from Libby Dam:

The precise means that will be utilized to meet these objectives are largely dependent on real-time conditions and in-season management. It is not possible to develop a single definitive recommendation for a sturgeon operation at this time due to the uncertainties in the forecast, and shape and volume of inflow. Given these uncertainties, the Service has developed the following guidelines for sturgeon operations in 2018:

- The 2018 sturgeon operations at Libby Dam will consist of one period of ramp-up/pre-peak/ascending limb flows, one period of peak flow (~20,000 cubic feet per second (cfs) or higher to provide a minimum flow of ~32,000 cfs at Bonners Ferry), and one period of ramp-down/post-peak/receding limb flows. The ramp-up and ramp-down will occur within 2006 BO ramping rates.
- Selective withdrawal gates at Libby Dam above elevation 2,326 mean sea level will be installed gradually prior to, and during, the augmentation operations, with the objective of passing the warmest water available in the forebay as it becomes available. Minimum submergence of selective withdrawal gates at Libby Dam is 30 feet, and gates will be installed to keep withdrawal elevations within 30-40 feet until all gates are installed.
- Release of the warmest water possible from Libby Dam, in combination with lower volume of release, will allow the Kootenai River temperature to increase to appropriate spawning temperatures at Bonners Ferry (8-10°C) during the receding limb of the hydrograph.
- Based on the Service's 2006 BO on operations of Libby Dam, and the May final April-August volume runoff forecast of 7.35 MAF, we are within a Tier 4 operations year for Kootenai River white sturgeon. The minimum recommended release volume for sturgeon conservation in a Tier 4 year is 1.2 MAF, and we recommend the following procedures for discharge of at least this minimum volume:
 - o Increase discharge from Libby Dam to ~20,000 (peak) cubic feet per second (cfs) over a 7-day period (pre-peak flows) when the Regional Team of Biologists determines that high elevation tributary run-off is peaking.
 - Maintain peak discharge (~20,000 cfs, depending on head of the forebay and river stage at Bonners Ferry) for as long as possible (~25 days of peak flows), taking into account the shape and volume of the ascending and descending limbs of the hydrograph and the total sturgeon flow augmentation volume available (i.e. 1.2 MAF). Although ~20,000 cfs is requested for sturgeon operations, under current conditions dam managers may need to increase outflows from Libby Dam to full powerhouse for flood risk management purposes.
 - o After peak flows, gradually decrease discharge at Libby Dam (post-

peak), adhering to ramping rates in the 2006 BO, and exhaust the total sturgeon volume to maintain a river flow that will result in a gradually receding stage at Bonners Ferry (Figure 3).

- o After the sturgeon flow augmentation volume has been exhausted, continue to decrease discharge at Libby Dam towards stable summer flows, to no less than bull trout minimum flows (9,000 cfs in Tier 4).
- o Total number of days at peak discharge will depend on real time conditions and the shape of the inflow hydrographs.
- O Current modeling indicates that the intended flow objective at Bonners Ferry of 30+kcfs will be sustained for approximately 33 days.

As always, flood risk reduction operations supersede sturgeon flow augmentation, and dam managers will coordinate operations with regional sturgeon managers.

Sturgeon augmentation discharge may be extended for additional days if the Corps elects to provide volume in excess of the minimum volume requirement in the 2006 BO and to control the refill rate of Libby Dam.

Provide stable or gradually declining discharge through the end of September following ramping rates and minimum flow guidelines in the 2006 BO for bull trout and white sturgeon.

Additional recommendations may be provided as water supply forecasts are updated.

JUSTIFICATION:

The objective of the 2018 sturgeon augmentation operation described in this SOR is to provide, and maximize the duration of, peak river stages/flows during the spring run-off period. Preliminary analysis of sturgeon telemetry data by the Idaho Department of Fish and Game indicates that the number of days at or above 30,000 cfs at Bonners Ferry plays a role in increasing the likelihood that spawning sturgeon will migrate upsteam of Bonners Ferry. Overall, the goal of this operation is to provide conditions that will enable sturgeon to migrate to, and spawn over, rocky substrates that exist upstream of Bonners Ferry.

Table 1. Kootenai Sturgeon Habitat Attributes from 2008 Libby Dam BO RPA Clarification.

Attribute	Measure	Objective
Area: RM 141.4 to RM		
159.7		
Timing of Augmentation	May into July (triggered by	Provide conditions for
Flows	sturgeon spawning	normal migration and
	condition), in all years	spawning behavior.
	except for Tier 1.	
Duration of Peak	Maximize peak	Through in-season
Augmentation Flows for	augmentation flows with	management, provide
Adult Migration and	available water for as	peak augmentation flows
Spawning	many days as possible, up	that lead to a biological
	to 14 days during the peak	benefit for sturgeon to
	of the spawning period	maximize migration and
	with pulses ¹ , in all years	spawning behavior via a
	except for Tier 1.	normalized hydrograph.
Duration of Post-Peak	Maximize post-peak	Through in-season
Augmentation Flows for	augmentation flows with	management, provide
Incubation and Rearing	available water for as	post-peak augmentation
	many days as possible, up	flows that lead to a
	to 21 days, in all years	biological benefit for
	except for Tier 1.	sturgeon to maximize
		embryo/free-embryo
		incubation and rearing via
		descending limb of a
		normalized hydrograph.
Minimum Flow Velocity ²	3.3 ft/s and greater in	Provide conditions for
	approximately 60% of the	spawning and
	area of rocky substrate in	embryo/free-embryo
	the area of RM 152 to RM	incubation and rearing.
	157 during post-peak	
	augmentation flows.	
Temperature Fluctuation	Optimize temperature	Provide conditions for
	releases at Libby Dam to	normal migration and
	maintain 50° F with no	spawning behavior via a
	more than a 3.6° F drop.	normalized thermograph.

_

¹ Kootenai sturgeon spawn on the descending limb of the hydrograph. "Pulses" refer to slight reductions in flow during this two-week period to initiate spawning.

² In order to develop an agreed-upon estimate and measurement of the areal extent of the velocity and depth attributes, the Action Agencies shall, together with the Service and in collaboration with other involved parties as needed, develop appropriate as sessment tools (e.g., hydrologic models) of the braided reach.

Depth at Spawning Sites	Intermittent depths of 16.5 to 23 ft or greater in 60% of the area of rocky substrate from RM 152 to RM 157 during peak augmentation flows.	Provide conditions for normal migration and spawning behavior.
Substrate	Approximately 5 miles of	Provide habitat for
Extent/Spawning	continuous rocky substrate;	embryo/free-embryo
Structures	create conditions/features	incubation and rearing.
	that improve the likelihood	
	of recruitment success.	
Minimum Frequency of	To facilitate meeting the	
Occurrence	attributes via: powerhouse	
	plus up to 10,000 cfs flow	
	test: a flow test will occur	
	2010 through 2012 (or	
	until the Kootenai River	
	Restoration Project is	
	implemented) if the	
	Service determines in 2008	
	and 2009 that the success	
	criteria described in Action	
	1.3(b) have not been met.	
	Habitat improvement	
	projects and other options:	
	through adaptive	
	management, as noted in	
	RPA Components 2 and 5,	
	implement the Kootenai	
	River Restoration Project	
	by the aspirational date of	
	2012-2016.	

The operating parameters outlined in this SOR are intended to provide some guidance on how to achieve the attributes listed in Table 1 of the 2006 BO, given the current water supply forecast. Previous years operations have shown that conditions at Libby Dam and in the Kootenai River basin can change rapidly. Recognizing this, the start date and exact shape of the operation will need to be developed and modified in-season as more is known. The in-season coordination will occur in the sturgeon technical team and with a final recommendation coordinated through the action agencies and the Technical Management Team.